

Naturalguard is an Essential Oil supplement obtained from mixture

of three plant oil extracts:

Lavender, Pine and Eucalyptus oils.

Innovative technique is applied in extraction and evaluation of each plant and its composition.

Several carriers, like minerals in feed premix, dilution in water and in salt have been used.

RHEA

Product Description

Form: Colourless Liquid

Characteristics: It has physical properties similar to potable water with pH 6.5-7.5. It is non-hazardous, user-friendly and consumable.

Packaging: Polyethelene Plastic bottles 1.2L, and 5L

Stability: The product is stable for over 18 months

RECOMENDED DOSE OF NATURALGUARD AS WATER SUPPLEMENT IN SWINE

IMMUNE DOSE

Naturalguard dose 80 ppm mixed in drinking water everyday

TREATMENT DOSE

Naturalguard dose 160-240 ppm mixed in drinking water for 1 to 2 weeks

в

CONCEPT 1

 Ligamenvirales Mononegavirales Nidovirales Picornavirales Tumovirales 		4. Polar water		
		5. Soil		
		6. Thermal spring 7. Hypersaline		
		- Tymoviai	65	
Unassigned	ed			
Adenoviridae	Endornaviridae	Permutotetraviride		
Alphatetraviridae	Flaviviridae	Phycodnaviridae		
Alvernaviridae	Fuselloviridae	Picobirnaviridae		
Ampullaviridae	Geminiviridae	Plasmaviridae		
Anelloviridae	Globuloviridae	Polydnaviridae		
Ascoviridae	Hepeviridae	Polyomaviridae		
Asfarviridae	Hypoviridae	Potyviridae		
Astroviridae	Hytrosaviridae	Poxviridae		
Bacillariornaviridae	Inoviridae	Reoviridae		
Bacillamaviridae	Iridoviridae	Retroviridae		
Baculoviridae	Lavidaviridae	Sequiviridae		
Barnaviridae	Leviviridae	Spiraviridae		
Bicaudaviridae	Luteoviridae	Tectiviridae		
Bidnaviridae	Marseilleviridae	Tetraviridae		
Bimaviridae	Microviridae	Tombusviridae		
Bromoviridae	Mimiviridae	Totiviridae		
Caliciviridae	Nanoviridae	Turriviridae		
Carmotetraviridae	Nimaviridae	Virgaviridae		
Caulimoviridae	Nodaviridae	Sobernovirus		
Chrysoviridae	Nudiviridae	Bacilladnavirus		
Circoviridae	Orthomyxoviridae	Cilevirus		
Closteroviridae	Papillomaviridae	Noravirus		
Comoviridae	Partitiviridae	Pandoravirus		
Corticoviridae	Partiviridae	Salterprovirus		
Custovindae	Parvoviridae	Ourmiavirus		

1. Marine

3. Sewage

2. Freshwater

Bunyavirales

Caudovirales

Herpesvirales

- The ever-present virosphere
- Dark matter of the virosphere: persistence
- Since virus persistence is exceedingly common but usually a silent state, it represents a large but mostly unnoticed force in evolution—the dark matter of biology.
- Jonathan R. Goodman 2020

Concept 2

- Evolution and natural product diversity. The Screening Hypothesis the basic concepts
- using enzymes with broad substrate specificity
- exploiting the fact that many chemical reactions give multiple products.
- Branched and matrix pathways
- Richard D. Firn and Clive G. Jones 2003
- Phytochemical diversity: The sounds of silent
 metabolism
- Efraim Lewinsohn, Mark Gijzen 2009

Concept 3

CONCEPT PROVING

MODE OF ACTION

- Naturalguard, containing Natural oils, possesses pronounced capability to stimulate the induction of humoral and cell-mediated immune response of lymphocytes to the antigens of pathogenic bacteria and alloantigen.
- It maintains the immunity level by keeping IgG level high which helps to protect animal from infectious diseases.
- It reduces the Mucosal Immune response which can be seen by low IgM value in NG treated group.
- It maintains the basic metabolic function of animal body. It is able to reduce the stress level of animal.
- It reduces the load of harmful pathogen (virus and bacteria) in the farming environment.
- It acts directly against specific pathogens like African Swine Fever, ND, H5N1 and on several pathogenic bacteria.

MODE OF ACTION

Immune Modulating Properties

- Naturalguard possesses pronounced capability to stimulate bactericidal activity of cultured lymphocytes, modulate the processes of PMNL and monocytes phagocytosis.
- It modulates the processes of respiratory burst and the synthesis of free radicals in phagocyting cells by interacting with polysaccharide-binding cell receptors.
- It possesses pronounced capability to stimulate the induction of humoral and cell-mediated immune response of cultured human lymphocytes to the antigens of pathogenic bacteria and alloantigen.
- Naturalguard, depending on concentration and ratio of effectors with target-cells, is able to modulate the functional activity of NK cells.

In Vitro Trial on ATCC Microorganisms

Antibacterial activity of Naturalguard against pathogenic bacterial and yeast strains

CJSC, Armenia

Objective & Trial Design

Objective: To determine the Antibacterial activity of Naturalguard against pathogenic bacterial and yeast strains

Measurement: The antibacterial activity is expressed by inhibition diameter (mm \pm SD). Represent statistical difference (p \leq 0.05) in the size of inhibition zones formed under the paper disc by NG and the control.

Microorganisms selected for the study: Escherichia coli ATCC-8739, Micrococcus luteus ATCC-10240, Pseudomonas aeruginosa ATCC-9027, Salmonella enterica subsp. enterica serovar Typhimurium ATCC-14028, Staphylococcus aureus ATCC-6538, Staphylococcus epidermidis ATCC-12228) and anti-fungal (Candida albicans ATCC-10231 and Candida albicans NCTC-885-653).

Anti Bacterial results

Destavial and uses to studing	Naturalguard	Tetracycline	Fluconazole
Bacterial and yeasts strains	10 µl	30 µg	40 µg
Staphylococcus aureus ATCC-6538	10.5 ± 1.7	32.1 ± 0.8*	ND
Staphylococcus epidermidis ATCC-12228	8.3 ± 0.7	12.3 ± 5.8	ND
Escherichia coli ATCC-8739	7.1 ± 0.05	19.1 ± 1.5*	ND
Salmonella entericaserovar Typhimurium ATCC-14028	7.1 ± 0.07	20.5 ± 1.0*	ND
Pseudomonas aeruginosa ATCC-9027	12.6 ± 0.4*	8.7 ± 1.5	ND
Micrococcus luteus ATCC-10240	10.3 ± 0.9	$28.9 \pm 1.0^*$	ND
Candida albicans ATCC-10231	7.1 ± 0.3	ND	27.4 ± 0.9*
Candida albicans NCTC-885-653	7.0 ± 0.03	ND	25.5 ± 1.4*

Anti-bacterial activities of Naturalguard against Staphylococcus aureus

Anti-bacterial activities of Naturalguard against Micrococcus luteus

Natural essential oils displays a pronounced bactericidal activity against an resistant to antibiotics strains Escherichia coli ATCC-8739, Micrococcus luteus ATCC-10240, Pseudomonas aeruginosa ATCC-9027, Salmonella enterica subsp. enterica serovar Typhimurium ATCC-14028, Staphylococcus aureus ATCC-6538, Staphylococcus epidermidis ATCC-12228) and anti-fungal (Candida albicans ATCC-10231 and Candida albicans NCTC-885-653).

Poultry Trials

Trial 1

Effect of Naturalguard (NG) on productivity and blood parameter of calves during growth and transportation period

Faculty of Animal Sciences- University of Gajah Madah Yogyakarta, Indonesia

Results at 8 weeks

ltom	Treatment		CENA	Duralura
item	Control	NG	SEIVI	P-value
Initial BW, kg	87.55	88.35	1.69	0.932
Final BW, kg	128.50	137.30	3.71	0.360
DMI, kg/d	4.42	4.40	0.05	0.146
ADG, kg/d	0.68	0.82	0.03	0.942
G:F	0.156	0.192	0.01	0.168

Results

Effect of Naturalguard supplementation on body weight during transportation and recovery period

Results at 8 weeks

ΕΔ

Growing Period

Body Weight (Kg)

Treatment	Initial body weight	Body weight (30 d)	Body weight (60 d)
Control	88	108	129
Naturalguard	90	114	141

Conclusion

Utilization of BAV Salt improve daily body weight gain 0.17 kg higher than control (0.85 kg vs 0.68 Kg)

SHID.

Calf before and after NG application

Before

After

Trial 2

Effect of Naturalguard (NG) on productivity and blood parameter of Dairy Cattle

Faculty of Animal Sciences- University of Gajah Mada Yogyakarta, Indonesia

Trial Design

Feeding trial

- Treatment (basal diet + Naturalguard Dose 50 g/head/day) n = 10 heads
- Control (basal diet), n=10 heads
- Variable measured
- Body weight gain, feed intake, feed conversion ratio
- Milk yield (milk production, fat content, protein content)
- Digestibility study (DM, OM, Nitrogen digestibility)
- Serum parameters
 - Blood content : red blood cell, white blood cell, Packet cell volume, hemoglobin.
 - Mineral (Ca, P, Mg), cholesterol, glucose, triglyceride, total protein, albumin, urea, creatinine.
- Statistical analysis
 - T-test

Treatment	Initial body weight	Body weight (60 d)	Gain (kg)
Control	522	556	34
Naturalguard	530	575	45

number of animal: 28 head

Conclusion

Utilization of Naturalguard (50 g/head/day) improve body weight gain 0.18 Kg of lactating dairy cattle (0.75 kg vs 0.57 Kg).

Milk Production

Parameter	Control (n=10 head)	Naturalguard (n=10 head)
Initial Body weight (kg)	514.20	514.55
Final Body weighy (kg)	547.30	557.35
Total Milk Prodution (49 d)	551.54	574.15
Average daily production (I)	11.26	11.74
Daily feed intake (kg)	20.39	20.90
Blood plasma metabolism		
Calcium (mg/Kg)	34.56	33.63
Phosphorus (mg/Kg)	107.62	93.70
Magnesium (mg/Kg)	9.49	9.52
Zing (mg/Kg)	0.58	0.40
Iron Fe (mg/Kg)	3.27	3.26
Sodium (mg/Kg)	219.49	216.68
Chloride (mg/Kg)	671.74	662.31

Conclusion

Utilization of Naturalguard (50g/head/day) improved total milk production until 22.61 of lactating dairy cattle.

Milk Composition

Milk Composition	Control n= 10 head	Naturalguard n= 10 head
Temperature (°C)	28.67	28.72
Fat (%)	4.16	4.38
Freezing Point (°C)	-0.44	-0.48
Spesific Wight Scale	25.96	26.20
Specific Wight	1.02	1.03
Conductivity	0.62	0.63
Lactosa (%)	4.14	4.17
Solid non fat (%)	7.41	7.60
Protein (%)	2.71	2.78

Conclusion

Utilization of Naturalguard (50 g/head/day) have no impact on milk composition in cattle

Congresses & Publications

Thank you